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A B S T R A C T

The integration of remotely sensed data into models of evapotranspiration (ET) facilitates the estimation

of water consumption across agricultural regions. To estimate regional ET, two basic types of remote

sensing approaches have been successfully applied. The first approach computes a surface energy

balance using the radiometric surface temperature for estimating the sensible heat flux (H), and

obtaining ET as a residual of the energy balance. This paper compares the performance of three different

surface energy balance algorithms: an empirical one-source energy balance model; a one-source model

calibrated using inverse modeling of ET extremes (namely ET = 0 and ET at potential) which are assumed

to exist within the satellite scene; and a two-source (soil + vegetation) energy balance model. The second

approach uses vegetation indices derived from canopy reflectance data to estimate basal crop

coefficients that can be used to convert reference ET to actual crop ET. This approach requires local

meteorological and soil data to maintain a water balance in the root zone of the crop. Output from these

models was compared to sensible and latent heat fluxes measured during the soil moisture–atmosphere

coupling experiment (SMACEX) conducted over rain-fed corn and soybean crops in central Iowa. The

root mean square differences (RMSD) of the estimation of instantaneous latent and heat fluxes were less

than 50 W m�2 for the three energy balance models. The two-source energy balance model gave the

lowest RMSD (30 W m�2) and highest r2 values in comparison with measured fluxes. In addition, three

schemes were applied for upscaling instantaneous flux estimates from the energy balance models (at the

time of satellite overpass) to daily integrated ET, including conservation of evaporative fraction and

fraction of reference ET. For all energy balance models, an adjusted evaporative fraction approach

produced the lowest RMSDs in daily ET of 0.4–0.6 mm d�1. The reflectance-based crop coefficient model

yielded RMSD values of 0.4 mm d�1, but tended to significantly overestimate ET from corn during a

prolonged drydown period. Crop stress can be directly detected using radiometric surface temperature,

but ET modeling approaches-based solely on vegetation indices will not be sensitive to stress until there

is actual reduction in biomass or changes in canopy geometry.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The integration of remotely sensed data into models of
evapotranspiration (ET) has broadened the field of application of
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these models from point to basin and regional scales. Operational
applications of remote sensing-based ET models to hydrology and
agriculture have increased in the last few years (Allen et al., 2007a).
A number of theoretical and experimental studies, addressing both
the processing of remote data (Moran et al., 1991; Berk et al., 1998)
and flux exchange modeling with limited information (Jackson
et al., 1987; Kustas and Norman, 1996), have been necessary to
reach the requirements of accuracy and robustness for operational
applications.

From these studies, several methods have been developed for
estimating ET using remote sensing (see recent review by Kalma

mailto:mariap.gonzalez.d@juntadeandalucia.es
http://www.sciencedirect.com/science/journal/01681923
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et al., 2008). Two general types of remote sensing approaches for
estimating crop ET have been successfully applied in agricultural
water use studies. The first approach partitions available energy
using the radiometric surface temperature (TR), derived from
thermal band imagery, to constrain the sensible heat flux,
computing latent heat as a residual to the surface energy balance
(e.g., Moran et al., 1994; Kustas and Norman, 1996; Gillies et al.,
1997; Bastiaanssen et al., 1998). A second approach relies on the
ability of vegetation indices (VI) derived from surface reflectance
data to trace the crop growth and estimate the basal crop
coefficient (Kcb). The latter method generates spatially distributed
values of Kcb that capture field-specific crop development (Bausch
and Neale, 1989) and are used to adjust a reference ET (ETo)
estimated daily from local weather station data.

Successful applications of the surface temperature approach
must address the fact that TR differs from the aerodynamic
temperature, To, needed to compute sensible heat, particularly for
partial vegetation covered surfaces (Kustas, 1990), and several
schemes of varying levels of complexity and input requirements
have been formulated to deal with this difference. Some employ
empirical/semi-empirical methods for adjusting TR to To, tuned to
account for spatial variability in the roughness lengths for heat and
momentum transport (e.g., Kustas et al., 1989; Lhomme et al.,
1994; Chehbouni et al., 1996; Mahrt and Vickers, 2004). When
calibrated with field data, empirical relationships have provided
accurate results (Chavez et al., 2005); however, such relationships
are typically crop or vegetation specific and are not likely to
function correctly when applied to different crop types or
landscapes.

A class of internally calibrated surface temperature schemes
avoids the problem of specifying To by instead modeling the
vertical near-surface air gradient TA � To. These methods are based
on selecting pixels in the satellite image representing the extreme
heat and moisture exchanging surfaces (i.e., a dry non-transpiring
surface where ET = 0 and a wet surface where ET is at potential)
and calculating the spatially distributed sensible heat flux
assuming a linear relationship between TR and the near-surface
air temperature gradient across the image (Bastiaanssen et al.,
1998). This approach also reduces the need for atmospheric
correction of TR, which is a cumbersome and error-prone process.

Other TR-based approaches model the effects of partial
vegetation cover on To using two-source model parameterizations
(Shuttelworth and Wallace, 1985; Norman et al., 1995), which
partition surface fluxes between the soil and canopy components
of the scene. This more physically based approach does not require
in situ calibration, although most implementations do require
accurate radiometric temperature retrievals. A comparison
between a two-source model and an internally calibrated model
over different landscapes (Timmermans et al., 2007) showed a
reasonable agreement with tower measurements; however, there
were significant discrepancies in the heat flux maps generated by
the two approaches, particularly for bare soil and sparse canopy
covered areas.

Polar-orbiting satellites typically image a scene at best once
every couple of days, resulting in instantaneous flux estimates at
the time of thermal image acquisition. For most practical
applications in water management and agriculture, these instan-
taneous ET values need to be transformed to daily values. Daily
scaling is generally performed by assuming the conservation of a
scaling factor determined at the time of imaging, such as the
evaporative fraction (Crago and Brutsaert, 1996) or the ratio of
actual to reference ET (Allen et al., 2003). Bare soil seems to be the
most problematic surface for daily upscaling, since both scaling
methods perform well for transpiring crops but poorly for surfaces
with low evapotranspiration rates (Colaizzi et al., 2006). Alter-
natively, geostationary satellites provide surface temperature at
hourly timesteps, allowing direct computation of daily fluxes;
however, the spatial resolution of such imaging systems is
typically too coarse to resolve individual agricultural fields.

The temporal upscaling process is avoided by the VI-basal crop
coefficient approach, which provides daily values directly. The
details of this approach are discussed below. Another advantage of
this approach is that satellite imagery in the reflective bands is
more readily available than thermal band data, and generally at
higher spatial resolution. However, unless coupled to a soil water
balance, this method cannot account either for soil evaporation or
the reduction of transpiration due to stomatal closure under water
stress conditions. In contrast, surface-temperature-based
approaches can readily capture stress effects without requiring
ancillary precipitation and soil texture information (Anderson
et al., 2007b).

This paper compares the performance of a semi-empirical one-
source energy balance model, an internally calibrated TR scaling
model, a two-source energy balance model for estimating sensible
and latent heat fluxes from soil and canopy elements, and the
vegetation index-basal crop coefficient approach for estimating
daily ET. The energy balance models tested basically differ in the
method used to estimate sensible heat fluxes. Thus we concentrate
on examining those fundamental differences by using measured
net radiation and soil heat flux values. The comparison is
referenced to an extensive micrometeorological dataset collected
during the soil moisture–atmosphere coupling experiment (SMA-
CEX/SMEX02; Kustas et al., 2005) conducted over rain-fed corn and
soybean crops in central Iowa.

2. Methodology

2.1. Experimental fields and ground-based measurements

Ground flux measurements were collected during SMACEX/
SMEX02 from June 20 to July 9 2002 near Ames, Iowa, on 12 fields,
6 grown with corn and 6 with soybean (Kustas et al., 2005; Fig. 1).
During the field campaign, the corn and soybean crops were in
their vegetative stage of growth, with leaf area index varying in the
soybean fields between 0.8 and 3.1, and in the corn fields between
1.6 and 4.9 (Anderson et al., 2004; see also Table 1).

Each of the 12 fields were equipped with eddy covariance
systems mounted on micrometeorological flux towers; 10 fields
had a single tower while two fields (one in corn and one in
soybean) had an additional tower to sample in-field heterogeneity
(Fig. 1). The operational towers for the days and time of the day
concerning this study correspond to the fields and days described
in Table 1. The setup and characteristics of the flux towers and the
processing techniques applied to the datasets are described with
detail in Prueger et al. (2005). Data loggers recorded 30-min
averaged fluxes and 10-min averaged air temperature and
humidity data. The energy balance closure was about 85% (Prueger
et al., 2005). In order to compare these data with the model output,
which is based on the principle of conservation of energy, closure
in the measurements was forced using either the Bowen ratio
method or the residual-LE closure method. The first method
assumes that the Bowen ratio is correctly measured by the eddy
covariance systems and H and LE are rescaled to meet the energy
balance while preserving this ratio (Twine et al., 2000). The
residual-LE closure method assumes that H is correctly measured,
thus the energy balance equation is solved for LE. Brotzge and
Crawford (2003) found that the determinations of LE using the
eddy covariance method adjusted using the Bowen ratio closure
method tended to underestimate LE under high evaporative
demand, which may support use of the residual LE-method (e.g., Li
et al., 2004). For more details about the field measurements see
Kustas et al. (2005) and Prueger et al. (2005).



Fig. 1. False color composite of the Landsat ETM-7 image (July 1, 2002; DOY 182) of part of the SMACEX study area at Ames, Iowa, showing the fields that contained the eddy

covariance flux stations. The description of the fields is in Table 1 and the yellow polygons represent the upwind averaging areas. ID 701 is the weather station. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
Average leaf area index, canopy height and ground cover fraction within the flux tower averaging rectangles in each field and on each date selected for the application of the

models. Leaf area index and canopy height were estimated from ground cover fraction using experimental equations derived by Anderson et al. (2004).

Field Crop Soil type Leaf area index (m2/m2) Canopy height (m) Ground cover fraction

23 June 1 July 8 July 23 June 1 July 8 July 23 June 1 July 8 July

WC03 Soybean CANISTEO 0.84 1.63 2.71 0.20 0.31 0.42 0.40 0.64 0.81

WC06 Corn CLARION 2.53 3.97 4.89 1.08 1.61 1.97 0.82 0.97 0.97

WC13 Soybean WEBSTER 1.99 0.35 0.72

WC14 Soybean CLARION 1.45 2.21 3.01 0.29 0.37 0.44 0.63 0.78 0.94

WC15_1 Corn CANISTEO 2.32 3.58 4.60 1.01 1.46 1.85 0.75 0.88 0.93

WC15_2 Corn CANISTEO 2.11 3.40 4.48 1.01 1.46 1.85 0.71 0.84 0.92

WC16_1 Soybean CLARION 1.14 3.08 0.24 0.45 0.53 0.62

WC16_2 Soybean CLARION 0.84 1.78 0.20 0.33 0.51 0.70

WC23 Soybean CLARION 1.28 1.78 0.26 0.33 0.39 0.69

WC24 Corn CLARION 3.74 4.58 1.52 1.85 0.96 0.96

WC25 Corn SPILLVILLE 2.23 2.53 0.97 1.08 0.60 0.61

WC33 Corn NICOLLET 1.57 3.16 3.98 0.74 1.31 1.61 0.61 0.87 0.91
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2.2. Satellite-based measurements

The remote sensing data used here were acquired by the
Landsat 5 and 7 satellites during the experimental period on June
23 (day of year, DOY, 174), July 1 (DOY 182) and July 8 (DOY 189),
2002. The thermal band images were corrected for atmospheric
and surface emissivity effects using the atmospheric radiative
transfer model MODTRAN 4.1 as described by Li et al. (2004). This
correction resulted in at-surface radiometric temperatures. Radio-
sonde observations collected within the experimental site (fields
WC15 and WC16, Fig. 1) during the satellite overpasses, were used
along with local sun photometer measurements to obtain the
necessary input data for the MODTRAN model. The same model
was used to correct the shortwave bands for atmospheric
transmittance, obtaining at-surface reflectance values.

Imagery from the Landsat 5 Thematic Mapper (TM) and Landsat
7 Enhanced Thematic Mapper Plus (ETM+) has a nominal pixel
resolution of 30 m in the shortwave bands and 60 m (Landsat 7) or
120 m (Landsat 5) in the thermal band.

The prevailing wind direction during all overpasses was from
south-southwest. Based on the description of the tower flux
footprints in Chavez et al. (2005) (who showed that most
footprints were 100–140 m long, with most of the weight
concentrated in the first 60 m upwind from the flux stations),
model flux estimates were averaged over 120 m � 180 m (4 � 6
shortwave pixels) rectangles centered upwind of each flux tower in
the prevalent wind direction.
2.3. Energy balance models for estimating evapotranspiration

2.3.1. One-source models

The latent heat flux (LE, W m�2) can be derived from the energy
balance equation as

LE ¼ Rn � G� H (1)

where Rn (W m�2) is net radiation, G (W m�2) soil heat flux and H

(W m�2) sensible heat flux. In the application of Eq. (1), Rn and G

may be measured values and H can be estimated using the bulk
aerodynamic resistance equation:

H ¼ rCP
dT

rAH
(2)

where r is air density (kg m�3), Cp is the specific heat of air
(1005 J kg�1 K�1), dT (K) is the temperature gradient between
two heights above the surface, z1 and z2 (m), and rAH (s m�1) is
the aerodynamic resistance to turbulent transport between z1

and z2.
Typically, z2 is the height above the surface where wind speed

and air temperature are measured and z1 is the height of the zero-
plane displacement plus the roughness length. The temperature at
this latter height is called aerodynamic temperature (To, K). For
calculating the aerodynamic temperature over the crops in the
SMACEX experiment, Chavez et al. (2005) adjusted an empirical
function of the radiometric surface temperature (TR, K), the air



Fig. 2. Schematic illustration of the series resistance network used in the 2S model

(Norman et al., 1995). The subscripts C and S indicate canopy and soil, respectively.

Symbols are defined in the text.
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temperatures (TA, K), the leaf area index (L), and the wind speed (u,
m s�1):

To ¼ 0:534TR þ 0:39TA þ 0:224L� 0:192uþ 1:67 (3)

Chavez et al. (2005) computed the aerodynamic resistance, rAH,
for stable and unstable atmospheric conditions using the Monin–
Obukov similarity theory; the zero-plane displacement height and
the roughness lengths for sensible heat and momentum transfer,
required for calculating rAH, were obtained after calibrating
empirical functions of crop height, using the SMACEX data as
well. Since the stability corrections are functions of H, an iterative
procedure is needed for computing rAH using this theory. This
empirical one-source model was applied as formulated by Chavez
et al. (2005), and from here on it will be referred to as 1S-Emp.

The 1S-Emp model has the disadvantage of requiring local
calibration using ground-based micrometerological observations.
A second single-source model that does not require local
calibration, and therefore has more general applicability, was also
tested. This approach assumes that the temperature gradient can
be approximated by a linear relationship of the surface tempera-
ture (Bastiaanssen et al., 1998):

dT ¼ aþ bTR (4)

where a and b are empirical parameters estimated as described
below. Other authors compute an aerodynamic resistance between
two near-surface heights above the plant canopy (Allen et al.,
2007b) using an iterative stability correction scheme. The wind
speed is extrapolated to a ‘‘blending height’’ (200 m) where it is
assumed to be uniform and unaffected by surface features. Allen
et al. (2007b) contend that by using this approach, the effect of
To � TR differences and the variation in the land surface roughness
on the relation between dT and TR in Eq. (4) are minimized.

The parameters a and b are determined by means of a
calibration based on the selection of ‘‘hot’’ and ‘‘cold’’ pixels
within the satellite scene (Bastiaanssen et al., 1998). The dT values
for these two pixels were estimated by rearranging Eq. (2) for the
selected ‘‘hot’’ and ‘‘cold’’ pixels and by using Eq. (1) to derive the
respective values of H. Following the procedure proposed by Allen
et al. (2007b), the ‘‘hot’’ pixel should be bare, dry soil, so LE = 0 and
H = Rn � G; and the cold pixel should be a well-watered crop at full
cover where LE is assumed to be 5% above that of the alfalfa
reference evapotranspiration, computed using the standardized
ASCE Penman-Monteith equation (ASCE-EWRI, 2005).

This one-source modeling approach for computing H with
internalized calibration was applied as formulated by Allen et al.
(2007b) in the METRIC model.

2.3.2. Two-source model

The two-source model (2S) used in this study is the updated
version of Norman et al.’s (1995) model as presented in Appendix A
of Kustas and Norman (1999) and the Appendix of Li et al. (2005).
Norman et al.’s model has two variants differing on the assumed
resistance network. The variant compared in this study uses the
series resistance network. A brief description of the model adapted
to our study follows.

The radiometric surface temperature is assumed in the model to
be a combination of the soil (TS) and canopy (TC) temperatures.
When the surface is viewed from nadir, the ensemble radiometric
surface temperature is expressed as

TR ¼ f cT4
C þ ð1� f cÞT4

S

� �1=4
(5)

where fc is the fraction of ground covered by the canopy, which is
computed as a function of the observed leaf area index.

The energy balance equation can be formulated for the whole
canopy-soil system as well as the canopy layer and the soil layer
sources as

Rn ¼ H þ LEþ G (6)

RnC ¼ HC þ LEC (7)

RnS ¼ HS þ LES þ G (8)

Each term in Eq. (6) is partitioned between the vegetated
canopy and soil, thus:

Rn ¼ RnC þ RnS (9)

H ¼ HC þ HS (10)

LE ¼ LEC þ LES (11)

where the subscripts C and S indicate canopy and soil, respectively.
For the series system, where the soil and canopy fluxes interact

with each other (Fig. 2), HC, HS and H are expressed as

HC ¼ rC p
TC � TAC

rX
(12)

HS ¼ rC p
TS � TAC

rS
(13)

H ¼ HC þ HS ¼ rC p
TAC � TA

rA
(14)

where TAC (K) is the air temperature in canopy-air space, rX (s m�1)
is the total boundary layer resistance of the canopy of leaves, rS

(s m�1) is the resistance to heat flow in the boundary layer
immediately above the soil surface, and rA (s m�1) is the
aerodynamic resistance to heat transfer. The expressions for
calculating the resistances rS, rX, and rA can be found in Norman
et al. (1995); and the expressions for calculating, G, RnS and RnC can
be found in Kustas and Norman (1999). LEC is calculated iteratively
using the Priestley–Taylor (PT) approximation (Priestley and
Taylor, 1972) as the initial value; and LES is calculated as a
residual to the overall energy balance. In cases of vegetation stress,
the assumed Priestley–Taylor approximation for LEC results in an
unreasonably high TS which causes a non-physical solution for LES,
namely <0 or condensation during the daytime. This forces a



Table 2
Crop parameters used for deriving the crop coefficients and computing the water

balance following the procedure described in FAO Irrigation and Drainage Paper No.

56 (Allen et al., 1998).

Parameter Soybean Corn

Maximum crop height 0.6 m 2.0 m

Maximum effective root depth (Zr max) 1.1 m 1.2 m

Minimum effective root depth (Zr min) 0.1 m 0.1 m

SAVImax 0.75 0.75

SAVImin 0.1 0.1

Maximum basal crop coefficient (Kcb,max)a 1.06 1.09

Ground cover fraction for Kcb,max (fc,mx) 0.80 0.80

a Typical values adjusted for local relative humidity and wind speed.
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reduction in the PT parameter (a from its potential ET value of
�1.26) in an iterative process described in Kustas et al. (2004).
Eqs. (5)–(14) can be solved for all heat fluxes and the temperatures
TS, TC and TAC (Norman et al., 1995).

2.3.3. Extrapolation from instantaneous to daily values

Both the one-source and the two-source models provide
instantaneous values of heat fluxes corresponding to the time of
the satellite overpass (between 10:29 and 10:48 CST, depending on
the date and the sensor). However, for most applications an
integrated value of the latent heat over the day is more useful. In
this paper we explored three methods of extrapolation from
instantaneous to daily values.

The first method assumes self-preservation in the diurnal cycle
of the energy budget, so that the relative partitioning among the
components of the energy balance, expressed by the evaporative
fraction [EF = LE/(Rn � G)], remains constant over the day (Crago,
1996).

Other authors (Gurney and Hsu, 1990; Brutsaert and Sugita,
1992) have pointed out that the EF calculated in morning hours
causes an underestimation of daily values, because EF increases
slightly into the afternoon. For instantaneous values computed
around 5.5 h past sunrise (close to Landsat overpass time),
Anderson et al. (1997) found differences of about 10% between
estimated and measured daily fluxes. In consequence, these
authors suggested the use of an alternative evaporative fraction
calculated as

EF0 ¼ 1:1
LE

Rn þ G
(15)

The third extrapolation method uses a reference evapotran-
spiration fraction (Allen et al., 2002a,b, 2007b), assuming that this
fraction is relatively constant throughout the day as Romero (2004)
demonstrated for several crops, including corn. For consistency
with the VI-crop coefficient approach described in the next section,
and taking into account a previous comparison conducted by
Colaizzi et al. (2006), reference evapotranspiration for grass (ETo) is
used herein instead of the alfalfa reference evapotranspiration
used by Allen et al. (2002a,b). Therefore, daily evapotranspiration
values (ET24) are computed as

ET24 ¼
ET

ETo

� �
ETo24 (16)

where ET and ETo are the instantaneous crop and reference
evapotranspiration values and ETo24 is daily reference evapotran-
spiration, calculated using the Penman–Monteith equation (Mon-
teith and Unsworth, 1990; Allen et al., 1998). Note that the ratio ET/
ETo in Eq. (16) is equivalent to the crop coefficient for the day of
concern (as described in the next section).

2.4. Vegetation index derived crop coefficient

Daily ET was also computed using FAO methodology, based on
the concepts of crop coefficient and reference ET (Doorembos and
Pruitt, 1977). Reference evapotranspiration (ETo, mm) was
estimated using the Penman–Monteith equation with hourly data
of solar radiation, wind speed, air temperature and relative
humidity supplied by a weather station centered in the study area
(ID 701, Fig. 1). The crop coefficient (Kc) relates the evapotran-
spiration of a given crop to that of a reference surface, and was
derived using the dual approach (Wright, 1982) in the form
popularized in the FAO56 manual (Allen et al., 1998). This
approach separates crop transpiration (represented by the basal
crop coefficient, Kcb) from soil surface evaporation as follows:

ET ¼ ðKcbKs þ KeÞETo (17)
where Ks quantifies the reduction in crop transpiration due to soil
water deficit and Ke is the soil evaporation coefficient, obtained by
calculating the amount of energy available at the soil surface as

Ke ¼ Kr Kc max � Kcbð Þ (18)

where Kr is a dimensionless evaporation reduction coefficient
dependent on topsoil water depletion (Allen et al., 1998) and Kc max

is the maximum value of Kc following rainfall or irrigation. The
value of Ke cannot be greater than the product few � Kmax, where
few is the fraction of the soil surface that is both exposed and
wetted.

Vegetation indices (VIs) are transformations of two or more
spectral bands designed to assess vegetation condition, foliage,
cover, phenology, and processes related to the fraction of
photosynthetically active radiation absorbed by a canopy (fPAR)
(Glenn et al., 2008). The fact that both the basal crop coefficient,
Kcb, and VIs are sensitive to leaf area index (L) and ground cover
fraction (fc) (Neale et al., 1989; Choudhury et al., 1994) supports
the estimation of crop coefficients from spectral measurements.
Based on this assumption and the fact that Kcb peaks before full
ground cover, Gonzalez-Dugo and Mateos (2008) derived a linear
equation to compute Kcb from SAVI (the soil adjusted vegetation
index, Huete, 1988). A modification of this equation (that avoids
the adjustment function of the crop height) has been used here:

Kcb ¼
Kcb;mx

f c;mx

SAVI� SAVImin

SAVImax � SAVImin

� �
if f c < f c;mx (19a)

Kcb ¼ Kcb;max if f c� f c;mx (19b)

where the subscripts max and min refer to the values of SAVI for
very large L and bare soil, respectively, and fc,mx is the fc at which
Kcb is maximal (Kcb,mx) (Table 2).

In order to compute Ke and Ks in Eq. (17), it was essential to
carry out a soil root zone water balance and to obtain information
regarding the occurrence of soil wetting by rainfall. The root zone
depth (Zr) was computed as a function of Kcb:

Zr ¼ Zr min þ ðZr max � Zr minÞ
Kcb

Kcb max
(20)

where Zr max and Zr min are the maximum effective root depth and
the effective root depth during the initial stage of crop growth
(Table 2). The change in the root zone water content, DSw, is
computed as the difference between the water inflows and
outflows:

DSw ¼ SWf � SWi ¼ R� ET� D (21)

where SWf and SWi (mm) are the root zone water content at the
beginning and end of the water balance period, R is infiltrated
rainfall and D is deep drainage, both during the water balance
period. Eq. (21) may be expressed in terms of root zone water



Table 3
Soils parameters used for computing the water balance following the procedure

described in Allen et al. (1998), being uFC the soil water content at field capacity, uWP

the soil water content at wilting point, Ze the depth of soil surface evaporation layer,

TEW the total evaporable water and REW the readily evaporable water.

Parameter Soil type

Canisteo Webster Nicollet Clarion Spillville

Texture class Silt Clay

Loam

Silt Clay

Loam

Loam Loam Loam

uFC (m3 m�3) 0.30 0.30 0.30 0.31 0.31

uWP (m3 m�3) 0.12 0.12 0.12 0.15 0.15

Ze (m) 0.1 0.1 0.1 0.1 0.1

TEW (mm) 24 24 24 23.5 23.5

REW (mm) 10 10 10 10 10

M.P. Gonzalez-Dugo et al. / Agricultural and Forest Meteorology 149 (2009) 1843–18531848
deficit computed daily:

RZWDi ¼ RZWDi�1 þ ETi þ Di � Ri (22)

where the subscript i indicates the day of concern and RZWDi and
RZWDi�1 are the root zone water deficits on days i and i � 1,
respectively.

It is understood that the root zone is full of water, RZWD = 0,
when its water content is at field capacity, and that it is empty
when the water content is at the wilting point. The root zone water
holding capacity (RZWHC) is the depth of water between these two
extremes.

The stress coefficient, Ks, is computed based on the relative root
zone water deficit as:

Ks ¼
RZWHC� RZWDi

ð1� pÞRZWHC
if RZWDi < ð1� pÞRZWHC (23a)

Ks ¼ 1 if RZWDi�ð1� pÞRZWHC (23b)

where p is the fraction of the RZWHC below which transpiration is
reduced.

The water balance computation was initiated in November
2001 and simulated under different starting soil moisture
conditions, with all cases indicating that on May 1, 2002, the root
zone could be assumed to be at field capacity due to several
important rainfall events that occurred at the end of April. Daily
rainfall data were obtained from the rain gauge network of the
National Soil Tilth Research Laboratory, selecting the rain gauge
nearest to each averaging rectangle. The soil parameters necessary
for applying the soil water balance were obtained by identifying
the dominant soil class (Miller, 2006) in each averaging rectangle,
consulting the description of the typical soil profile (Soil Survey
Staff, NRCS, 2008) of the pertinent soil classes and selecting from
Table 19 in Allen et al. (1998) the appropriate values of soil water
content at field capacity and wilting point for each averaging
rectangle (Table 3).

3. Results

3.1. Comparison of instantaneous fluxes

The comparison between the H and LE predictions from the
three energy balance models with measured values is depicted in
Fig. 3, with statistics presented in Table 4. The measured LE data in
Fig. 3 were obtained by forcing closure using the residual method.
An overall good agreement between the estimated and measured
fluxes was found for all models. The root mean square differences
(RMSD) and absolute mean bias errors (MBE) in model estimates of
both LE and H were less than or equal to 50 W m�2 and 33 W m�2,
respectively, for the three models (Table 4). The ranking in
performance as measured through the RMSD was 2S, METRIC, 1S-
Emp; and the ranking as measured through the MBE was METRIC,
2S, 1S-Emp. The 2S model provided the best overall r2 values.

In order to evaluate model performance for operational
applications, the values of TA and u used in Eq. (3) in the
computation of the aerodynamic resistances and in the computa-
tion of the sensible heat fluxes were taken from a standard
meteorological station located in the study area (ID 701, Fig. 1),
rather than from the flux towers themselves. When the models
were run with the input values of TA and u measured at the flux
towers, the agreement between predicted and observed data was
marginally improved for the 2S model, and significantly improved
for the 1S-Emp model, but did not appreciably affect the
performance of METRIC. This difference among models was due
to the fact that the METRIC model does not use TA, except for
estimating the cold pixel LE reference value and it uses u only for
computing wind speed at the 200 m blending height, while the 2S
and 1S-Emp models use TA for calculating sensible heat fluxes and
use u for the calculation of the aerodynamic resistances. In
addition, the 1S-Emp model calculates the aerodynamic tempera-
ture as a function of TA and u with Eq. (3) calibrated using values
measured at the flux towers. In the case of the 1S-Emp model, using
the flux tower TA and u, instead of the values obtained at the
weather station, reduced the RMSE of the LE predictions from 50 to
38 W m�2 and the MBE from 33 to 12 W m�2, and increased the r2

from 0.83 to 0.91.
The predictions of the 2S model were consistent with previous

calculations by Li et al. (2005) using data from the same field
campaign, and improved slightly the results obtained with the
parallel resistance formulation presented by Gonzalez-Dugo et al.
(2006).

On the other hand, the flux tower sites did not sample fields
with bare soil, the type of surface where Timmermans et al. (2007)
found greater discrepancies between the 2S model (which showed
good agreement with the observations) and SEBAL (Bastiaanssen
et al., 1998), the model that pioneered the use of a linear
relationship between TR and dT (Eq. (4)) for computing H.
Moreover, the variation in surface roughness or vegetation water
stress across the scenes was relatively small in our study (Norman
et al., 2006), a condition under which a unique linear relationship
between dT and TR is more likely to exist.

A major disadvantage of the 2S and 1S-Emp models is the need
for atmospheric and emissivity correction of the thermal infrared
imagery to obtain land surface temperature. For the uncertainty of
�1.5 8C and �1 8C for Landsat-5 and Landsat-7, respectively, in the
determination of TR reported by Li et al. (2004), the variation of H in
our experimental conditions would be in the range of 20–25 W m�2

for the 2S and 35–40 W m�2 for the 1S-Emp model, on average. These
variation produce an increase of the RMSD of H estimations compared
to measured values of 11 W m�2 on average for the TSM and by
18 W m�2 for the 1S-Emp the RMSD. However, techniques using
time-differencing in surface temperature developed by Anderson
et al. (1997) and Norman et al. (2000) built on the 2S algorithm, have
shown to be much less sensitive to errors in TR. The atmosphere land
exchange inverse (ALEXI) scheme, which is coupled to an atmospheric
boundary layer model, does not require air temperature observations
or highly accurate atmospherically emissivity corrected TR observa-
tions (Anderson et al., 2007a).

Similarly, the scene internal calibration of the METRIC model
greatly reduces the need for an accurate atmospherically and
emissivity corrected land surface temperature. However, the
selection of the cold and hot pixels that are needed instead entails
some degree of subjectivity. For this reason, we explored the effect
of different selected extreme temperature pixel values on the
estimation of H. Three different observers trained in the processing
of satellite images were asked to select the cold and hot pixels in
the three Landsat images. The three observers had to follow a



Fig. 3. Comparison of the instantaneous sensible heat (H) and latent heat (LE) estimates using the 2S, METRIC and 1S-Emp models and measured H, and the residual closure

adjusted LE values measured by the flux tower network. The symbols correspond to the crop type and the date of measurement for each field.

Table 4
Statistical performance of the two-source (2S), one-source empirical (1S-Emp), and one-source internalized calibration (METRIC) models for estimating

instantaneous sensible (H) and latent (LE) heat fluxes. N is the number of observations; RMSD is the root mean square difference; MBS the mean bias error,

and r2 the correlation coefficient.

Flux N RMSD (W m�2) MBE (W m�2) r2

2S 1S-Emp METRIC 2S 1S-Emp METRIC 2S 1S-Emp METRIC

H 29 30 50 42 17 �33 �1 0.83 0.70 0.70

LE 29 30 50 42 17 33 1 0.92 0.83 0.81
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Table 5
Statistical performance for instantaneous and daily results of the METRIC model with three sets of extreme pixel values selected by different operators. The subscripts BR and

RA refer to Bowen ratio and residual adjustment methods to force closure, respectively.

Operator Instantaneous values Daily values of ET

Na RMSDb (W m�2) r2 Na RMSDb (mm d�1) r2

H HBR LEBR H LERA HBR LEBR

A 29 42 44 40 0.70 0.81 0.73 0.86 27 0.58 0.76

B 29 47 39 35 0.76 0.83 0.79 0.89 27 0.78 0.80

C 29 53 48 44 0.69 0.81 0.68 0.85 27 0.89 0.74

a Number of observations.
b Root mean square difference.

Table 6
Statistical performance of the two-source (2S), one-source empirical (1S-Emp), and one-source internalized calibration (METRIC) models for estimating daily

evapotranspiration using three methods to scale from instantaneous to daily values: reference evapotranspiration fraction (ET0F), evaporative fraction (EF) and 1.1 times the

evaporative fraction (EF0). And statistical performance of the FAO—vegetation index method for estimating evapotranspiration (FAO-VI).

Scaling method Na RMSDb (mm d�1) MBEc (mm d�1) r2

2S 1S-Emp METRIC 2S 1S-Emp METRIC 2S 1S-Emp METRIC

ET0F 27 0.74 0.84 0.76 0.38 0.59 0.07 0.76 0.84 0.76

EF 27 0.64 0.58 0.92 �0.52 �0.32 �0.80 0.81 0.70 0.76

EF0 27 0.39 0.57 0.58 �0.05 0.27 �0.25 0.81 0.70 0.76

FAO-VI 27 0.42 0.01 0.70

a Number of observations.
b Root mean square difference.
c Mean bias error.

Fig. 4. Instantaneous evaporative fraction (10:30–11 CST) vs. daily evaporative

fractions computed from the flux tower measurements.
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common procedure (Allen et al., 2002a,b). The mean differences
found in the selection of extreme values between the operators
were of 0.5 8C for the cold pixel and 1 8C for the hot pixel, with
maximums of 1.2 and 2.2 8C, respectively, for specific dates. The
average difference in H values obtained with the three sets of hot/
cold pixel is 25 W m�2. The general results of the model
application are presented in Table 5 and indicate that differences
in the hot and cold pixel selections did not significantly affect
model performance. The results used for models comparison
(Tables 4 and 6) correspond to the set of extreme values selected by
operator A, which yielded the lowest RMSD in daily integrated
latent heating.

3.2. Comparison of daily ET

The results of the daily integration of latent heat performed
using the three scaling methods discussed in Section 2.3.3
(evaporative fraction, adjusted evaporative fraction and reference
ET fraction) are presented in Table 6. The three energy balance
models behaved similarly in relation to each method of
integration. The adjusted evaporative fraction method using a
correction factor of 1.1 yielded the best results (lowest RMSD). The
negative mean bias error found when using the evaporative
fraction method for mid morning measurements (Table 6)
confirmed previous findings (Brutsaert and Sugita, 1992). The
MBE was reduced using the 1.1 factor introduced in Eq. (15), while
flux observations from SMACEX suggest an optimal value of 1.14
(Fig. 4).

Fig. 5 depicts the relationship between daily measured ET and
estimates from the three energy balance models extrapolated from
instantaneous values using the adjusted EF method, along with ET
values estimated with the VI-basal crop coefficient approach. The
data points were reasonably close to the 1:1 line, with an RMSD of
less than 0.60 mm d�1 for all models (Table 6). The 1S-Emp model
slightly overestimated daily ET, as was observed for the
instantaneous flux comparisons. Although the METRIC model
reproduced instantaneous ET well, it underestimated daily ET by
0.25 mm d�1. This bias disappeared when the EToF scaling method
proposed in Allen et al. (2007b) was used, although RMSD
increased (Table 6). The RMSD and MBE for the FAO-VI model
were comparable to those of the energy balance models, although
the correlation coefficient was smaller (Table 6).

The absence of rain during the period between DOY 172–187
increased the root zone water deficit, causing water stress in some
crop patches (Anderson et al., 2004). The effect of this water stress
showed up in the ground measurements in the corn fields on DOY
182, but it was not predicted by the FAO-VI model. For this model,
6 out of the 8 corn data points for DOY 182 were above the 1:1 line,
overestimating daily ET by 1 mm day�1 on average (Fig. 5d). One
possible reason for this overestimate could be that the soil water
model simulations used in the FAO-VI model were non-repre-
sentative of the local crop conditions, due either to spatial
variability in rainfall or sub-optimal specification of soil hydraulic
parameters, resulting in an underprediction of the RZWD and
overprediction of Ks.



Fig. 5. Daily latent heat estimates produced by the four models compared with the daily values measured by the flux tower network.
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4. Discussion and conclusions

Crop evapotranspiration estimates from two types of remote
sensing models were compared with flux observations from 10
field sites in a rain-fed corn and soybean production region in
central Iowa. The first type (based on the surface energy balance)
requires measurements of radiative temperature, with ancillary
computations using the red and near-infrared spectral band
reflectance. The second type (VI-basal crop coefficient) requires
only red and near-infrared spectral band reflectances as remotely
sensed inputs.

Three variants of thermal-based energy balance models were
compared. Among these, the 2S model has a higher degree of
physical realism than the 1S-Emp and the METRIC models, while
requiring similar input information. In the estimation of instanta-
neous heat fluxes, the 2S model marginally outperformed both
one-source modeling schemes, although all three models gave
satisfactory results. It should be stressed that the results presented
herein used measured values of Rn and G for the three energy
balance models. Since LE is obtained by residual to the surface
energy balance, inter-model discrepancies are likely to be greater
when using model estimates of Rn and G.

The 1S-Emp model, with aerodynamic temperature obtained
from a locally calibrated empirical function, has limited applic-
ability to environments where calibration of the radiometric–
aerodynamic relation is not performed a priori. Performance of the
1S-Emp model degraded significantly when non-local meteorolo-
gical data were used to drive the model, as would be the case in
most operational applications. Previous research has proven the
validity of the 2S model in other environments (Kustas and
Norman, 1997), while some conceptual issues pointed out by
Norman et al. (2006) and model intercomparisons over actual
landscapes (Timmermans et al., 2007) raise concern about the
application of models with internalized calibration, based on the
selection of cold and hot pixels, over heterogeneous scenes.

Thermal satellite images used by 2S or 1S-Emp models require
atmospheric correction and calibration to obtain accurate land
surface temperatures. However TR time differencing technique is
shown to significantly reduce this dependency. The internal
calibration approach using maximum and minimum TR to
constrain energy partitioning for the limits ET�0 and ET = ETo in
the METRIC approach minimizes the need for atmospheric
corrections. However, this approach also assumes both ET
extremes exist within the satellite scene, which is not as likely
in rain-fed agricultural areas.

An important step in the application of the remote sensing energy
balance models is the extrapolation from instantaneous to daily and
seasonal values which are of more value for agricultural purposes.
For clear days, instantaneous values may be extrapolated to daily
values, but the extrapolation factor must be selected carefully. It is
likely that the extrapolation to daily values on days with different
conditions to the typical clear day will not perform as well.

The FAO-VI model provides daily rather than instantaneous
crop evapotranspiration, and therefore does not require additional
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processing for daily extrapolation. If this method is to be properly
applied, however, reliable rainfall and reference evapotranspira-
tion data must be available over the modeling region at spatial
resolutions resolving typical heterogeneity in the soil moisture
distribution. Surface networks at this scale are scarce, and
therefore in practice this information must be derived through a
combination of ground and satellite information and weather
prediction models.

Since the thermal-based energy balance models inherently
account for ET reduction due to plant water stress, these models
are more suitable than the FAO-VI model for estimating crop ET
under conditions of moisture stress. In these models, the elevated
canopy temperatures detected in the thermal band serve as an
effective proxy for precipitation data, providing a remote indicator
of depleted root zone available water (Hain et al., in press). These
applications underscore the value of maintaining global thermal
imaging sensors capable of resolving individual agricultural fields
(Anderson and Kustas, 2008).
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